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Summary

The importance of CD8+ T cells in the control of viral infections is well
established. However, what differentiates CD8+ T cell responses in individuals
who control infection and those who do not is not well understood. ‘Func-
tional sensitivity’ describes an important quality of the T cell response and is
determined in part by the affinity of the T cell receptor for antigen. A more
sensitive T cell response is generally believed to be more efficient and associ-
ated with better control of viral infection, yet may also drive viral mutation
and immune escape. Various in vitro techniques have been used to measure T
cell sensitivity; however, rapid ex vivo analysis of this has been made possible
by the application of the ‘magic’ tetramer technology. Such tools have poten-
tially important applications in the design and evaluation of vaccines.
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T cells are essential for viral immunity

T cells play an important role in containment of persistent
viral infections such as human immunodeficiency virus
(HIV) and hepatitis C virus (HCV). For example, depletion
studies in models of both HCV [1] and HIV [2] have dem-
onstrated the importance of CD8+ cytotoxic T lymphocytes
(CTL) in the control of virus replication. Additionally,
immunogenetic studies reveal an important impact of
human leucocyte antigen (HLA) class I and class II genes,
such as HLA B27 and B57, on disease outcome [3]. There has
been extensive characterization of the CD8 T cell response in
acute and chronic HCV [4] and HIV [5] infections, compar-
ing responses in those who control infection to those in
whom disease progresses. However, comprehensive under-
standing of what determines a successful as opposed to an
unsuccessful response requires more precise analysis of the
mechanisms involved. This endeavour is important in the
development of immunotherapy and vaccines.

T cells vary in quality

A number of factors have been suggested to play a role in
determining disease outcome in viral infections; these
include general features such as the magnitude of T cell
response and the number of epitopes targeted, the function-
ality of such responses and their longevity. At a more detailed
level it is likely that the exact peptides targeted, their ability
to mutate and escape T cell recognition and the sensitivity of

the individual T cells to peptide all play a major role. All
these factors have been under intense scrutiny in HIV and, to
a lesser extent, in HCV infection.

T cells that are able to recognize the same peptide bound to
major histocompatibility complex (pMHC) vary in their sen-
sitivity for antigen by several orders of magnitude [6,7] and it
has been shown in both murine models and human infection
that CD8+ CTLs that are able to recognize very low antigen
densities are most efficient at eliminating viruses [6,8–10].

A number of factors contribute to the sensitivity of the CTL
response. On the T cell side this is determined in large part
by T cell receptor (TCR) affinity, but also the level of TCR
expression, TCR valency CD8 expression and expression of
accessory molecules on the CTL clones comprising a poly-
clonal response. On the antigen-presenting cell or infected
target cell, a major contributor to the ability of T cells to
recognize low levels of antigen is the processing and binding
of peptide to MHC class I (MHCI). T cell sensitivity has been
referred to in the literature as ‘functional avidity’. However,
there are recent data to suggest that sensitivity is not an
entirely fixed property and sensitivity can be fine-tuned in
response to other factors such as cytokines and antigen level
[11]. We therefore propose the use of the term ‘functional
sensitivity’ in place of ‘functional avidity’, as it is usually the
sensitivity (which is determined by all of the above) rather
than the actual avidity of the interaction that has been
measured.

In principle, increased functional sensitivity by definition
allows T cells to recognize lower levels of peptide and thus
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target cells early in infection, or overcome immune evasion
mechanisms such as down-regulation of MHCI. Because
responses to different peptides, different HLA alleles or in
different individuals might comprise cells bearing different T
cell receptors, it is plausible that such variation may contrib-
ute to the efficacy of T cell responses.

Relating TCR affinity to T cell sensitivity

Induction of functional, long-lived CD8+ T cell responses
requires interaction with a professional antigen-presenting
cell, its co-stimulatory molecules and help from CD4+ T cells.
Once primed, CTL effector function is activated upon
engagement between the T cell receptor (TCR) and cognate
pMHCI [12], expressed on the surface of almost all nucle-
ated cells. On interaction of a TCR with its cognate pMHCI
there is ultimately a formal assembly of these molecules with
the formation of an immunological synapse. Thus, although
it is possible to measure specific TCR/pMHCI interactions in
isolation, and in a resting cell TCRs may move independently
within the membrane [13], inevitably the overall binding
must be viewed as a complex multimeric interaction.

The TCR interaction with pMHC is both sensitive and
specific. Cognate pMHC class II complexes are able to acti-
vate CD4 T cells when as few as 0·03% of total MHC mol-
ecules present on the cell surface contain antigen [14]. T cells
flux calcium ions in response to engagement of a single
MHC [15] and CD8 T cell clones can be activated by as few
as 1–50 pMHCI complexes [16,17]. Single amino acid sub-
stitution of presented peptides dictates strongly the ability of
T cells to respond to the antigen [18]. Such sensitivity and
specificity allows for appropriate responses to low levels of
presentation of non-self antigen. However, as it is known
that pMHCI/TCR interactions are very weak, this has led to
much interest in how this sensitivity and specificity are
achieved.

Kinetic models of the TCR : pMHCI interaction are
popular approaches to explain this paradox. The serial
engagement model proposes that a single agonist pMHCI
engages multiple TCRs on a given T cell to enable sustained
engagement and CTL triggering [17,19]. This is thought to
explain the observation that T cell activation is possible
despite low physiological levels of pMHCI on the surface of
cells [16,17]. The low affinity of the TCR : pMHCI interac-
tion enables rapid dissociation, ensuring that serial TCRs are
able to engage [20]. The kinetic proof-reading model sug-
gests that the TCR : pMHCI complex must engage for a
minimum half-life (t1/2) for completion of intracellular sig-
nalling events: if the off rate is too rapid the T cell cannot be
activated [21–23]. The kinetic discrimination model
expands on this to suggest that incomplete receptor activa-
tion leads to inhibition of T cell activation [23]. Combined,
these models predict that there is an optimal t1/2 required for
T cell activation [20,24]. Too short a t1/2 fails to activate T
cells and too long a t1/2 results in too long an interaction

preventing serial engagement [17,25]. These models have
been supported by experimental data using TCR mutants
conferring varying half-lives on the TCR : pMHCI interac-
tion [25–29].

Thus, although the details of TCR activation still require
much further work, a central role for TCR off-rate and TCR
affinity in determining the threshold for triggering of a CD8+

T cell in response to peptide appears to be emerging. Many
groups have hypothesized that this triggering threshold may
impact to the function or ‘quality’ of T cells in vivo. In fact,
surface plasmon resonance (SPR) has been used to show that
the affinity of the interaction between TCR and pMHCI
correlates with the ‘quality’ of the response of T cell clones
[30]. How may such complex biochemical measures be
translated to allow simple measurement of T cell sensitivity
during responses against persistent viral infections?

Assessment of T cell sensitivity

Functional assays

In the literature, ‘functional avidity’ or ‘sensitivity’ is defined
simply as the sensitizing dose of peptide epitope added exog-
enously to target cells yielding half-maximal CTL triggering
[sensitizing dose (SD) 50] in functional assays (such as
cytolysis and cytokine release). These can be performed
ex-vivo in some settings, if the frequency of T cells is rela-
tively high, or if the assay for T cell function is sensitive [such
as interferon (IFN)-g enzyme-linked immunospot assay
(ELISPOT)]. However, the readout from such assays is
complex, as it depends not only on the TCR affinity for
MHCI (and the peptide binding to MHCI) but also the
functional state of the T cells in the assay, and the exact assay
conditions.

Expansion in vitro of T cells is often used to perform
such analyses. However, the expansion in vitro leads to even
further complexity. T cell lines of differing functional sen-
sitivities can be generated in vitro by stimulation of periph-
eral blood polymorphonuclear cells (PBMCs) with distinct
doses of peptide antigen. Exposure to low-dose antigen
generates clones able to lyse cells more efficiently (i.e. at
lower peptide concentrations) than clones generated by
high-dose antigen [6,8]. This type of experiment would
suggest that cells activated by lower doses of antigen are of
higher sensitivity than those requiring large doses of
antigen and thus the exact conditions of culture may skew
the composition of the response. Therefore, although such
assays have been used conventionally, more recent
approaches to measurement of TCR sensitivity for peptide
have been developed.

Tetramers and assessment of T cell sensitivity

Because the interaction between a single TCR and pMHCI is
of low affinity, even if it is specific, staining with single
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pMHCI-labelled complexes does not lead to stable binding
of T cells. However, multimerization of pMHCIs, described
typically as ‘tetramers’ or ‘multimers’, takes advantage of the
capacity for aggregation of receptors in the cell membrane
and leads to high-level staining of specific cells (see Fig. 1).
Such technology has transformed our ability to identify
antigen-specific CD8 T cells ex vivo, and allows measure-
ment of such populations independent of function.

Measurement of the kinetic dissociation of pMHCI tet-
ramer constructs can be used to estimate the overall sensi-
tivity of the TCR : pMHCI interactions on a population of T
cells. Although simple staining intensity of pMHCI tetram-
ers does not correlate well with sensitivity [29,31,32], an
association can be demonstrated between sensitivity and the
stability of TCR : tetramer binding. Dissociation of pMHCI
tetramers from CTLs specific for tumour antigen was found

to correlate with the functional sensitivity of CTL clones [33]
(see Fig. 2).

‘Magic’ tetramers with modified CD8 binding

The T cell surface glycoprotein CD8 binds independently
from the TCR to an invariant region of the pMHCI complex.
This interaction is of extremely low affinity, even weaker
than that of TCR : pMHCI, with a KD in the order of
100 mM. CD8 is believed to have a number of roles in T cell
activation: extracellularly stabilizing TCR : pMHCI interac-
tions [34], promoting association of TCR and pMHCI [35]
and participating intracellularly in signal transduction in
initiating the cascade of T cell activation [36–40]. Although
there is evidence for all of these, CD8 binding is not essential
for all T cells, as so-called CD8 ‘independent’ epitopes exist
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naturally. HLA–A*68 is structurally incapable of binding
CD8 yet still functions normally in antigen presentation and
T cell activation [41].

CD8 co-receptor dependence varies inversely with affinity
of the TCR [42–46]. CTLs bearing high-affinity TCRs may
be activated independently of CD8 binding [43]. To exploit
this it is possible to evaluate the affinity of TCRs on a T
cell through modifications of the pMHCI : CD8 binding
interaction. Because the structures of pMHCI : CD8 have
been solved, it is possible to make specific mutants that
reduce, abrogate or enhance this binding (see Fig. 3).

These tools allow an immediate ex vivo analysis of the
CD8 dependence of the TCR : pMHCI interaction. T cells
that bind tetramers where CD8 binding is abrogated
(CD8null) are considered to be ‘high avidity’. Those which
bind tetramers only in the presence of intact CD8 interac-
tions may be considered low avidity. It is also possible to
generate a set of mutants where CD8 binding is partially
reduced where the spectrum of cells with intermediate
affinities may be observed. CD8-enhanched tetramers have
been dubbed ‘magic’ tetramers, as they allow the population
of specific T cells to effectively ‘appear’ and ‘disappear’ on
flow cytometric analysis [47].

Enhancement of CD8 binding may lead ultimately to a
complete loss of peptide specificity for TCR : pMHCI inter-
actions, as the tetramers will bind all CD8+ T cells. However,
very small increases in CD8 binding can have surprisingly
large effects functionally. TCR : pMHCI interactions which
are weak, for example in the case of singly substituted

peptides and where conventional tetramers will not bind,
may still be visualized using pMHCIs with subtly enhanced
CD8 : pMHCI binding (CD8high) [48].

pMHCI tetramers with abrogated CD8 binding (CD8null)
demonstrate a correlation between affinity and efficiency of
effector function [44] (see Fig. 4). These have been explored
in detail using highly defined CTL clones, where the
responses to wild-type and mutant peptides have been
mapped tightly. However, the technology has only generated
limited data so far in polyclonal responses to virus infection,
especially those measured ex vivo.

Given these tools to measure T cell sensitivity in various
ways, what information do we currently have that links dif-
ferences in T cell sensitivity with differences in the outcome
of viral infection?

The influence of T cell sensitivity on viral infection

The overall efficiency of CTL effector function may influence
the outcome to viral infection through effects on acute
control, induction of viral escape, CTL exhaustion and the
induction of memory. We consider these in turn.

Acute control

CTLs with high functional sensitivity have been shown to be
protective against viral infection in a number of settings.
This has been demonstrated clearly on adoptive transfer in
murine models [6,8]. In-vitro, highly sensitive CTL clones
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from mice vaccinated with a recombinant vaccina virus that
expresses the gp160 protein from the IIIB strain of HIV-1
were able to lyse infected target cells much earlier in the
course of cellular infection than the low-affinity clones. On
adoptive transfer into severe combined immunodeficiency
(SCID) mice inoculated simultaneously with the recombi-
nant virus, the high-avidity CTL clones were found to be
10-fold more effective at reducing the viral burden than
those of low avidity [8].

Protective immune responses against lymphocytic
choriomeningitis virus (LCMV) in mice are associated with
induction of CTL responses of high functional sensitivity in
a comparison between vaccine strategies. More sensitive
responses were induced by intraperitoneal immunization of
mice with non-replicative porcine parvovirus-like particles
bound to LCMV virus epitopes compared to synthetic latex
microspheres carrying the same peptides. The former CTL
response provided protection from subsequent challenge
with lethal doses of virus [45].

A number of studies have demonstrated the importance
of functional sensitivity in HIV. In vitro, the functional sen-
sitivity of CTLs for panels of HIV-1 epitope variants were
compared to the efficiency of CTL killing of cells infected
with whole HIV-1 containing the same epitope variant.
Efficiency of CTL killing of the HIV-1 infected target cells
was found to correlate with sensitivity. A narrow threshold
of functional sensitivity was demonstrated, below which
there was little or no killing of the target cells [46]. Analysis
of CTL responses to immunodominant HIV-1 epitopes

demonstrated an inverse correlation between CTL sensitiv-
ity and cell-associated viral load. HLA B27-restricted
CTLs in HIV-1 target the immunodominant epitope
B27-K10, and CTL clones specific for this epitope are
found to have higher functional sensitivity in comparison
to other HLA-A- and HLA-B-restricted CTL responses [9].
This is clearly of interest in context of the observation that
HIV progresses much more slowly in patients with HLA
B27.

In HCV, in vitro analysis of the cytotoxicity of CTL
clones against target cells pulsed with exogenous peptide
found there to be a significantly greater functional sensitiv-
ity in clearers compared to non-clearers [10]. This finding
has been supported by a further study where patients who
had cleared HCV genotype 1 were found to have higher-
avidity CTL responses, with enhanced IFN-g, tumour
necrosis factor (TNF)-a and cytotoxic activity compared to
chronic patients infected with the same genotype. Interest-
ingly, the same authors also found a difference in the ability
of NS31073-specific clones from clearers and chronics to
bind pMHCI high-valency multimers versus lower-valency
tetramers. Clones from patients who had cleared their HCV
were able to bind both multimers and tetramers, whereas
the clones from patients with chronic HCV were able to
bind only the high-valency multimers [49]. A formal
assessment of TCR affinity in such cases has not been
made; however, this potentially provides further insight
into the role of CTL sensitivity and in defining viral
clearance.
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Viral escape

Mutations within a viral genome often confer advantages in
vivo, the evolution of which is driven strongly by immune
selection pressures. Immune control of the virus before it is
able to mutate is therefore crucial in determining long-term
outcome to infection (see Fig. 5). In HIV and simian immu-
nodeficiency virus (SIV), viral escape mutations within

immunodominant epitopes play a critical role in early and
late loss of immune control [50–52] and this is also shown to
influence long-term outcome in acute HCV infection
[53,54].

There is a variation in the degree of escape between dif-
ferent epitopes within the viral genome of such persistent
viral infections, where some epitopes are observed to escape
while others are often conserved. One explanation which has
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been proposed for this is that more sensitive T cells are
associated with escape (‘driver’ responses), while less sensi-
tive cells may be simply ‘passengers’ which have little impact
on viral evolution or disease outcome [55]. More sensitive
populations are observed to drive viral escape, whereas less
sensitive CTLs are associated with epitope stability in both
HCV [56] and SIV [57]. In HIV, CTL responses to the pro-
miscuous epitope TL9-Gag were compared between HLA
types within the B7 supertype. B*8101-restricted TL9-Gag
responses were found to be of significantly higher functional
sensitivity than those restricted by B*4201. Higher TL9-Gag
sequence variation is observed in B*8101 compared to
B*4201-positive patients [58].

There is a clear conflict of interest in the outcome of
better-quality CTL responses. The immune advantages of
improved clearance of the more sensitive responses would
appear to be balanced against the disadvantage of driving
evolution of the virus in its ability to escape the host
immune response. However, viral fitness costs associated
with the acquisition of escape mutations may contribute to
the protective nature of some HLA class I alleles, such as
B57 [3].

Deletion and anergy

CTL dysfunction is seen in a number of chronic viral infec-
tions in humans [59,60] and animal models [61,62]. The
genesis of such dysfunction is not well understood, but is
thought to be related to repetitive triggering through the
TCR. One possible outcome is that more sensitive cells might
become preferentially over-stimulated and anergic in the
presence of high antigen load. This is supported by in vivo
studies showing the persistence of anergic CTLs with high
functional sensitivity under such conditions [63,64]. The
distinct sensitivities observed in cells of the acute and chronic
phase of HIV-1 appears to be a consequence of deletion of the
more sensitive cells, as determined by clonotypic analysis of
TCR VB chains by polymerase chain reaction (PCR). Inter-
estingly, sensitivity and clonotype were preserved in those
who controlled HIV-1 replication spontaneously to very low
levels [65]. This phenomenon is also observed in the mouse
model of LCMV. High-dose viral infection led to clonotypic
switching in the repertoire of epitope-specific cells and emer-
gence of dominant T cells with intermediate and low sensi-
tivity in chronic infection [66].

The affinity of the TCR, a fixed property of the cell, plays
an important role in determining CTL sensitivity. However,
the overall triggering threshold of a T cell in response to
peptide is determined not only by the affinity of the TCR,
but seems to be regulated. Naive CTLs have inherent dif-
ferences in sensitivity to peptide, pre-determining the
ability of a given CTL repertoire to clear infection; interin-
dividual difference in outcome from viral infection are thus
influenced by inherent differences in the quality of the
host’s T cell repertoire. Differences in functional sensitivity

are not seen after stimulation of naive CTLs from TCR
transgenic mice with varying levels of peptide antigen.
Paired daughter clones from CTLs were, however, able to
give rise to populations of cells of distinct sensitivity
dependent upon the level of antigen used to maintain the
clones [11]. Such plasticity would enable peptide sensitivity
to be tuned in response to the level of antigen presented,
while at the same time provide protection against apoptosis
induced by high amounts of peptide. This may explain the
observation of loss of CTL function at high viral doses
[67–69], suggesting that sensitivity is tuned down. Such a
phenomenon may be explained by the inducible expression
of the inhibitory co-stimulatory molecule programmed
death-1 (PD-1) with antigen exposure. Expression is
up-regulated markedly on antigen-experienced CTLs in
both HIV [70] and HCV [71], as well as LCMV [72].

Heterologous immunity

Previous infection with viruses containing sequences that
partially cross-react has been observed to influence the sub-
sequent response to heterologous infection – so-called het-
erologous immunity. This has been observed in some
murine models, and includes viruses which are quite unre-
lated genetically [73]. The overall impact of this process
in human infection is not understood fully, and in parti-
cular the quality of such responses has not been examined
in detail. It has been suggested that such responses may
skew the subsequent response to a pathogen and lead to
immunopathology.

We have recently examined one of the best-documented
examples of this in HCV using pMHCI with modified CD8
binding (‘magic tetramers’) as described above [47]. The
response concerned is specific for an immunodominant and
highly conserved epitope in HCV NS3. Tetramers created
using this peptide bind only in the presence of an intact CD8
recognition site, indicating that this is a low-avidity response
in natural infection. Responses to the HCV-NS3 epitope
have been reported to cross-react with an epitope derived
from influenza virus neuraminidase protein (Flu-NA).
However, in healthy donors and also in HCV+ donors we
could not detect cross-reactive T cells using conventional
tetramer staining, suggesting that this cross-reactivity was
very weak. Interestingly, using tetramers with enhanced CD8
binding (CD8hi) revealed cross-reactivity for the Flu-NA
peptide. This poor-quality response is therefore measurable,
although functionally the Flu-NA peptide was unable to
trigger IFN-g release. In further experiments it was possible
to enhance the sensitivity of the T cell response by using a
modified peptide derived from genotype 4. Here, increased
sensitivity to peptide was accompanied by loss of depen-
dence on CD8 for binding (i.e. binding of a CD8 null
tetramer).

Thus, overall, this examination in detail of a case of het-
erologous reactivity has revealed some of the limits of T cell
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cross-reactivity and its dependence on T cell sensitivity. The
ability to define T cell sensitivity readily using polyclonal
responses independently of function may allow further
examination of the importance of heterologous immunity in
man.

Conclusion

Advances in understanding of the basic biology of TCR
interactions with pMHCI have led to the development of
new tools and assays for determining the quality of the T cell

response. Conceptually, the presence of highly sensitive T
cells should be of benefit in control of viral infections,
although the twin threats of immune escape and immune
exhaustion act to diminish the power of anti-viral responses.
However, although there are some data to support the model
that TCR avidity is a key determinant of outcome, a casual
link is not established fully. We suggest that there are two
models which might be considered in trying confirm such a
link (see Fig. 6).

On one hand, different individuals may mount responses
of different quality for the same epitope (depending upon a

Fig. 6. Two models of how CD8 T cell

sensitivity could determine outcome to viral

infection. (a) Different individuals mount

responses of different sensitivity for the same
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to infection, e.g. CD8 T cell avidity, dose of
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number of factors including site, duration and dose of
antigen, as well as host genetics). The variation in such
responses might be linked to the suppression of viraemia or
the induction of immune escape (‘private avidity’). Alterna-
tively, all individuals may make responses of similar quality
against specific epitopes, i.e. the quality of the response is
essentially a fixed property of the epitope (‘public avidity’).
In this case, the overall picture will be determined by the
choice of epitopes available to the individual, which is driven
in turn largely by MHC. In this respect, the overall role of
TCR avidity in determining the striking protective effect of
HLA B27 and B57 in the outcome of both HIV and HCV has
not yet been explained fully. However, it has been suggested
that avidity plays some role [9].

Overall, we have a large number of new tools at our dis-
posal to dissect further the impact of changes in TCR avidity
or quality on the outcome of virus infection. Further work is
required in man, using carefully defined clinical cohorts
studied ideally from acute infection onwards. If we can
exploit these tools to strengthen a link between T cell sensi-
tivity and clinical outcome, this will be of substantial benefit
in both designing and analysing vaccines.
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